Reinforcement Learning in Continuous Time and Space
نویسنده
چکیده
This article presents a reinforcement learning framework for continuous-time dynamical systems without a priori discretization of time, state, and action. Based on the Hamilton-Jacobi-Bellman (HJB) equation for infinite-horizon, discounted reward problems, we derive algorithms for estimating value functions and improving policies with the use of function approximators. The process of value function estimation is formulated as the minimization of a continuous-time form of the temporal difference (TD) error. Update methods based on backward Euler approximation and exponential eligibility traces are derived, and their correspondences with the conventional residual gradient, TD(0), and TD(lambda) algorithms are shown. For policy improvement, two methods-a continuous actor-critic method and a value-gradient-based greedy policy-are formulated. As a special case of the latter, a nonlinear feedback control law using the value gradient and the model of the input gain is derived. The advantage updating, a model-free algorithm derived previously, is also formulated in the HJB-based framework. The performance of the proposed algorithms is first tested in a nonlinear control task of swinging a pendulum up with limited torque. It is shown in the simulations that (1) the task is accomplished by the continuous actor-critic method in a number of trials several times fewer than by the conventional discrete actor-critic method; (2) among the continuous policy update methods, the value-gradient-based policy with a known or learned dynamic model performs several times better than the actor-critic method; and (3) a value function update using exponential eligibility traces is more efficient and stable than that based on Euler approximation. The algorithms are then tested in a higher-dimensional task: cart-pole swing-up. This task is accomplished in several hundred trials using the value-gradient-based policy with a learned dynamic model.
منابع مشابه
Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملBarycentric Interpolators for Continuous Space and Time Reinforcement Learning
In order to find the optimal control of continuous state-space and time reinforcement learning (RL) problems, we approximate the value function (VF) with a particular class of functions called the barycentric interpolators. We establish sufficient conditions under which a RL algorithm converges to the optimal VF, even when we use approximate models of the state dynamics and the reinforcement fu...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملA Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning
This paper presents a direct reinforcement learning algorithm, called Finite-Element Reinforcement Learning, in the continuous case, i.e. continuous state-space and time. The evaluation of the value function enables the generation of an optimal policy for reinforcement control problems, such as target or obstacle problems, viability problems or optimization problems. We propose a continuous for...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملEfficient Continuous-Time Reinforcement Learning with Adaptive State Graphs
We present a new reinforcement learning approach for deterministic continuous control problems in environments with unknown, arbitrary reward functions. The difficulty of finding solution trajectories for such problems can be reduced by incorporating limited prior knowledge of the approximative local system dynamics. The presented algorithm builds an adaptive state graph of sample points within...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2000